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1 Introduction

One of the original motivations [1, 2] to consider a noncommutative structure of space or

spacetime was the hope that the presence of a dimensionful parameter, and a modification

of the short distance properties, could resolve the problem of the infinities of quantum field

theory. The analogy in this case is the presence of ~ and the noncommutativity of quantum

phase space solves the so called ultraviolet catastrophe of the black body radiation. In the

case of a field theory described by the Grönewold-Moyal product this hope is not fulfilled.

In this case instead of the elimination (at least partial) of the ultraviloet infinities, we

enconter the phenomenon of ultraviolet/infrared mixing [9], one of the novel features of a

field theory over a noncommutative space (noncommutative field theory).

Technically this means that some ultraviolet divergences of the ordinary theory dis-

appear, at the price of the appearance of infrared divergences in the same diagrams. In

particular one finds that this happens at one loop for nonplanar diagrams. Therefore while

the ultraviolet, short distance, properties of the theory are changed in the sense of a mit-

igation of the infinities, the price paid is the appearance of new kind of infinity. We will

describe in detail this phenomenon for the one loop corrections to the propagator, but there

is also a rough heuristic explanation of this phenomenon. The noncommutative ⋆ product

used in the Grönewold-Moyal product reproduces the commutation relation of quantum

mechanics: [xi, xj ] = iθij. Coordinates do not commute and therefore a generalization of

Heisenberg’s uncertainty principle is at work, a small uncertainty in the xi direction implies

a great uncertainty in the θijxj direction. Therefore a short distance in one direction and

the long distance in the other are coupled. This reasoning can be made more precise [9]

(but still heuristic) considering the dispersion of the product of gaussian functions. The

phenomenon persists also in the nonrelativistic case [10].
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The aim of this paper is to discuss the ultraviolet structure of noncommutative theories

with more general products than Grönewold-Moyal. Our analysis will be centered on the

one loop correction to the propagator, which is the source of all mixing. We will discuss

only the bosonic φ4 theory, but the results are more general than that and will apply to

other scalar and gauge theories as well since, as we will see, the behaviour which we find

is quite generic.

We will be discussing the euclidean version of the theory, or equivalently the case of

only spatial commutativity. In the Minkowskian case the nonlocality of the theory has been

claimed to lead to loss of unitarity [3] in the noncommutative theory which is obtained as

an effective theory of strings [4]. Nevertheless for theories for which noncommutativity

is fundamental there are issues of time ordering [5–8] which show that an appropriate

treatment can lead to an unitary theory. For purely time-space noncommutativity the

mixing may not present as such [17].

The ultraviolet/infrared mixing is in general connected with the nonlocality of the

product and has been generalised in various directions. Gayral [16] has shown that it

persists in the presence of isospectral deformations. The noncommutativity for the compact

case is basically given by a noncommutative torus, which in this context is a compact version

of the Grönewold-Moyal product. Some form of mixing also survives for the κ-Minkowski

case [15].

The paper is organized as follows. In section 2 we discuss the Ultraviolet/Infrared Mix-

ing for the Grönewold-Moyal Product. We then discuss the general form of translationally

invariant products. In section 4 we show the form of the mixing for a general product. This

section contains the main result of the paper, that is that the mixing persists unchanged

for a generic translation invariant product. We end the paper with some conclusions.

2 Ultraviolet/infrared mixing for the Grönewold-Moyal product

In this section we review the presence of ultraviolet/infrared mixing for a scalar theory.

We consider a field theory on a noncommutative space described by the action:

S =

∫
dxd 1

2

(
∂iϕ ⋆ ∂iϕ − m2ϕ ⋆ ϕ

)
+

g

4!
ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ (2.1)

where ⋆ usually denotes the Grönewold-Moyal product between functions which can be

defined in several different ways. These definitions are equivalent up to the fact that the

domain of definition can be different. The product depends on an antisymmetric matrix

θij and we write two standard expressions of it. The most common expression is expressed

as a series of differential operators:

(f ⋆M g)(x) = e
i

2
θij∂yi

∂zj f(y)g(z)
∣∣∣
x=y=z

(2.2)

This series is an asymptotic expansion [11] of (equivalent) integral expressions, some of

which can be found in the appendix of [13]. For the purposes of this paper the useful form

of the product is the following:

(f ⋆M g)(x) =
1

(2π)
d
2

∫
ddp ddqf̃(q)g̃(p − q)eip·xe

i

2
piθ

ijqj (2.3)

– 2 –
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Figure 1. The planar (a) and nonplanar (b) one loop correction to the propagator

where f̃ and g̃ are the usual Fourier transforms of f and g respectively. In both cases

it results

[xi, xj ]⋆M
= iθij (2.4)

and the product becomes the ordinary, commutative product for θ = 0. Note that for

this product ∫
dxdf ⋆M g =

∫
dxdfg (2.5)

which means that the free (quadratic) theory is the same in the commutative and noncom-

mutative cases.

The theory described by the action (2.1) has a propagator which is the same as in the

commutative case and a vertex [14] which is easily calculated from (2.3) to be, for four

incoming propagators of momenta ka,

VMoyal = V0e
− i

2

P

a≤b θijkaikbj (2.6)

where

V0 = −i
g

4!
(2π)dδd

(
4∑

a=1

ka

)
(2.7)

is the usual vertex of the commutative theory. The new vertex is not anymore invariant for

the exchange of incoming propagators, but maintains invariance for cyclic permutations.

As a consequence the planar and nonplanar diagrams are not necessarily equal and have to

be calculated separately. In this paper we will limit ourselves to the one loop case because

we are interested in the generic behaviour in the ultraviolet. Therefore we will be looking

at the two diagrams described in figure 1 and the one loop corrections to the propagator.

The corresponding Green’s functions are

G
(2)
P = −i

g

3

∫
dqd

(2π)d
1

(p2 − m2)2(q2 − m2)

G
(2)
NP = −i

g

6

∫
dqd

(2π)d
eipiθ

ijqj

(p2 − m2)2(q2 − m2)
(2.8)

In particular we see that the planar diagram is the same as in the commutative case, thus

dashing the hope that this particular noncommutative theory, with its inherent nonlocality,

could solve the infinities of field theory. The persistence of some divergences is more general

than the present calculation and was noted in [18] in the general framework of Connes’

– 3 –
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noncommutative geometry [24], while in [23] it is shown that not all divergences can be

eliminated in the presence of the commutation relation (2.4).

Let us concentrate on the nonplanar diagram. For this diagram there are no ultra-

violet divergences, and it is this diagram that shows the ultraviolet/infrared mixing. For

high momentum p the phase in the numerator oscillates rapidly and renders the diagram

convergent. However the numerator vanishes for p → 0 and we have

lim
piθij→0

G
(2)
NP =

1

2
G

(2)
P (2.9)

In [25] following the procedure set in [26] we have shown that the ultraviolet/infrared

mixing persists in an unchanged way also for a variant of the Grönewold-Moyal product,

the Wick-Voros product. This is naturally defined in two dimensions but can be generalized

to higher dimensions. Define:

z± =
x1 ± ix2

√
2

(2.10)

We will also use the notation

k± =
k1 ± ik2√

2
(2.11)

for a generic vector ~k.

The series form of the Wick-Voros product, analog of (2.2) is

f ⋆V g =
∑

n

(
θn

n!

)
∂n

+f∂n
−g = feθ

←−
∂+

−→
∂−g (2.12)

where

∂± =
∂

∂z±
=

1√
2

(
∂

∂x1
∓ i

∂

∂x2

)
(2.13)

The integral expression analog of (2.3) is

(f ⋆V g)(x) =
1

(2π)
d
2

∫
ddp ddqf̃(q)g̃(p − q)eip·xe−θq−(p+−q+) (2.14)

It results

z+ ⋆V z− = z+z− + θ

z− ⋆V z+ = z+z− (2.15)

and therefore

[z+, z−]⋆V
= θ (2.16)

Going back to the x’s, it is possible to see that this relation gives rise again to the standard

commutator among the x’s:

x1 ⋆V x2 − x2 ⋆V x1 = iθ (2.17)

With the z± coordinates the Laplacian and the d’Alembertian are respectively ∇2 =

2∂+∂− and � = ∂2
0 −∇2. The integral on the plane is still a trace, but the strong condition

of (2.5) is not valid anymore:
∫

d2zf ⋆V g =

∫
d2zg ⋆V f 6=

∫
d2zfg (2.18)

– 4 –
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where by d2z we mean the usual measure on the plane dz+dz−. This means that the free

propagator is not the same anymore as it receives a correction1 by a factor e−
θ
2
|~p|2. The

vertex has been calculated [25] and is

V⋆V
= V

∏

a<b

e−θka−kb+ = V
∏

a<b

e−
θ
2
( ~ka· ~kb+iεijkaikbj) (2.19)

It is then possible to calculate the one loop correction to the propagator. For the planar

case we obtain

G
(2)
P = −i

g

3

∫
d3q

(2π)3
e−θ(2p−p++q−q+)e−θ(p−q+−p−q+−p−p+−q−q+−q−p++q−p+)

(p2 − m2)2(q2 − m2)

= −i
g

3

∫
d3q

(2π)3
e−θp−p+

(p2 − m2)2(q2 − m2)
(2.20)

In this case all the contribution due to q cancel, so that there is no change in the convergence

of the integral. This is the same as in the Grönewold-Moyal case. The only difference with

is again the correction to the propagator. The expression for the nonplanar case is:

G
(2)
NP = −i

g

6

∫
d3q

(2π)3
e−θ(2p−p++q−q+)e−θ(p−q+−p−p+−p−q+−q−p+−q−q++p−q+)

(p2 − m2)2(q2 − m2)

= −i
g

6

∫
d3q

(2π)3
e−θ(p−p++i~p∧~q)

(p2 − m2)2(q2 − m2)
(2.21)

This time the q contribution does not cancel completely, and there remains the exponential

of the factor

p−q+ − q−p+ = i~p ∧ ~q (2.22)

which is the same as in the Moyal case. We see that the ultraviolet behaviour of the

two products is the same. The presence of the term eθp2

is due to the fact that the

free propagator is different in this case from the commutative theory, which in turn is a

consequence of the fact that for the Wick-Voros product the property (2.5) does not hold,

but the integral is still tracial (
∫

dxdf ⋆ g =
∫

dxdg ⋆ f). Apart from this difference the

structure is the same in the two theories, namely the one loop diagram does not give extra

contributions in the planar case, while it does in the non planar one. We will see below

that this behaviour is generic for all translation invariant products.

3 General translation invariant products

In this section we first introduce a generic star product in the differential series form, and

in the integral form. General star products were introduced in [27, 28] in the framework of

quantization of Poisson manifolds. For our purposes a generic star product is an associative

product between functions on R
d which depends on one or more parameters. In the limit

in which these parameters vanish the product becomes the usual poinwise product. Notice

1In the following, for this subsection, we will be in 2+1 dimensions to ease the comparison with the

Moyal product. The results are more general and dimension independent.

– 5 –
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that we contemplate the possibility that the star product be commutative, although in

general it will not be so.

We will consider two ways of expressing these generic products. In most cases (as in

the Grönewold-Moyal case) these two ways coincide on a dense domain on some space of

functions. The problem with expressions like (3.32) is that they are defined only at the

level of formal series, and there is no certainty that one can actually find a representation

of the deformed algebra of (a class of) the functions on spacetime with the noncommu-

tative product they define. We prefer to adhere to the principle: no deformation without

representation [29] and will present first the integral form of the product, which is more

suited for our purposes. Later we will present the generic differential form as well, and will

comment throughout the paper on both forms of the product.

The generalization of the star product (2.3) (or the Wick-Voros product (2.14)) is

the following

f ⋆ g =
1

(2π)
d
2

∫
dpddqddkdeip·xf̃(q)g̃(k)K(p, q, k) (3.1)

Where K can be a distribution and f̃(q) is the Fourier tranform of f . The product of

d-vectors is understood with the Minkowski or Euclidean metric: p · x = pix
i. The usual

pointwise product is also of this kind for K(p, q, k) = δd(k−p+q). The biggest restrictions

on K come from the associativity requirement which reads

∫
dkdK(p, k, q)K(k, r, s) =

∫
dkdK(p, r, k)K(k, s, q) (3.2)

This is nothing but the usual cocycle condition in the Hochschild cohomology, where the

two cocycle c ∈ C2(A) is the map

c : (f, g) ∈ A⊗A −→ A
c(f, g) = f ⋆ g (3.3)

A is the noncommutative algebra of functions with the star-product (3.1) and the cobound-

ary operator

∂ : Ck(A) −→ Ck+1(A) (3.4)

∂c(f0, . . . , fk) = f0 ⋆ c(f1, . . . , fk) +
k−1∑

i=0

(−1)i+1c(f0, . . . , fi ⋆ fi+1, . . . , fk)

+(−1)k+1c((f0, . . . , fk−1) ⋆ fk. (3.5)

In order for the two-cochain (3.3) to be a two-cocycle this becomes

0 = ∂c(f, g, h) = f ⋆ c(g, h) − c(f ⋆ g, h) + c(f, g ⋆ h) − c(f, g) ⋆ h

= 2 (f ⋆ (g ⋆ h) − (f ⋆ g) ⋆ h) (3.6)

that is (3.2).

– 6 –
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We now proceed to the discussion on translation invariant products. Defining the

translation by a vector a by Ta(f)(x) = f(x+a), by translation invariant product we mean

the property

Ta(f) ⋆ Ta(g) = Ta(f ⋆ g) (3.7)

At the level of Fourier transform we have

T̃af(q) = eiapf̃(q) (3.8)

For the invariance of the product (3.1) we must have

eia·p

∫
dpddqddkdeip·xf̃(q)g̃(k)K(p, q, k) =

=

∫
dqddkdeia·qeia·keip·xf̃(q)g̃(k)K(p, q, k) (3.9)

which means that at the distributional level

K(p, q, k) = ei(k−p+q)·aK(p, q, k) (3.10)

which is solved by

K(p, q, k) = eα(p,q)δ(k − p + q) (3.11)

where α is a generic function. We will therefore consider products that can be expressed as

f ⋆ g =
1

(2π)
d
2

∫
dpddqdeip·xf̃(q)g̃(p − q)eα(p,q) (3.12)

The usual pointwise product is given by α = 0, the Grönewold-Moyal product by

αM (p, q) = −i/2θijqipj and the Wick-Voros by αV (p, q) = −θq−(p+ − q+).

Associativity and the requirement that the integral is a trace impose severe constraints

on the form of α. In particular from (3.2) and (3.11) the cocycle condition becomes

α(p, q) + α(q, r) = α(p, r) + α(p − r, q − r) (3.13)

from this cocycle relation follow some other useful relations:

α(p, p) = α(0, 0) = α(p, 0)

α(0, p) = α(0,−p)

α(p, q) = −α(q, p) + α(0, q − p)

α(p + q, p) = −α(0, p + q) + α(0, p) + α(0, q) − α(−p − q,−q) (3.14)

This last relation ensures also the trace property.

∫
dxdf ⋆ g =

∫
dxddpddqdeα(p,q)eip·xf̃(q)g̃(p − q)

=

∫
dqdeα(0,q)f̃(q)g̃(−q) (3.15)

– 7 –
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Another relation which will be useful in the following is

α(p, q) = −α(0, p) + α(0, q) + α(0, p − q) − α(−p, q − p). (3.16)

We also require the algebra to be a ∗-algebra. That is that there is a ∗ conjugation such

that f∗∗ = f and (f ⋆ g)∗ = g∗ ⋆ f∗. This latter relation imposes

α(p, q)∗ = α(−p, q − p) (3.17)

Note that we do not require necessarily f ⋆ 1 = 1 ⋆ f = f , that is that the identity of the

algebra is the constant function. This condition would impose

α(p, p) = 0 and α(p, 0) = 0 (3.18)

The ⋆ products that we are considering are in general noncommutative, but a product

of the form (3.12) can be commutative. In this case we have that the restriction on the

kernel K reads

K(p, k, q) = K(p, q, k) (3.19)

that is the cocycle c is a coboundary

c(f, g) = ∂b(f, g) = f ⋆ b(g) + g ⋆ b(f) − b(f ⋆ g) (3.20)

with the cochain b given by the identity map. In terms of α the coboundary condition be-

comes

α(p, q) = α(p, p − q) (3.21)

3.1 Cohomology

It is possible to define an“α-cohomology” with respect to which α is a 2-cocycle, while it

becomes a coboundary for a commutative product. α ∈ A2(Ã) is the map

α : (p, q) ∈ Ã ⊗ Ã −→ Ã (3.22)

with Ã the algebra of Fourier transforms (to be precise α is defined on translations, realised

as linear functions in Ã) and the coboundary operator

∂ : Ak(Ã) −→ Ak+1(Ã) (3.23)

∂γ(p0, . . . , pk) =

k∑

i=0

(−1)iγ(p0, . . . , pî, pi+1, . . . , pk)

−(−1)kγ(p0 − pk, pi − pk, . . . , pk−1 − pk) (3.24)

In order for α in (3.22) to be a two-cocycle this becomes

0 = ∂α(p, q, r) = α(q, r) − α(p, r) + α(p, q) − α(p − r, q − r) (3.25)

– 8 –
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that is (3.13). A straightforward calculation verifies that ∂2 = 0. Thus, the associativity

condition (3.13) is a 2-cocylce condition in the α cohomology. Analogously the commu-

tativity condition can be shown to be a coboundary condition. Indeed, for α to be a

coboundary it has to be

α(p, q) = ∂β(p, q) = β(q) − β(p) + β(p − q) (3.26)

which implies the commutativity condition (3.21), that is α(p, q) = α(p, p − q).

The Grönewold-Moyal and Wick-Voros products, both noncommutative, are respec-

tively given by,

αM (p, q) = − i

2
θijqi(pj − qj) =

i

2
θp ∧ q (3.27)

and

αV (p, q) = −θq−(p+ − q+) = αM (p, q) − θ

2
(p − q) · q (3.28)

which are both cocyles in the α-cohomology and, more interestingly, differ by a term which

is a α-coboundary, according to (3.26) with β so defined

β(p) = p2 (3.29)

Indeed we easily verify that

αV (p, q) = αM (p, q) +
θ

4
∂β(p, q) (3.30)

With a symbolic manipulation programme and a little work is not difficult to construct

viable polynomial α’s. For example the following expression in two dimensions gives rise

to an associative product:

α = γ1p2q1 + γ2p1q2 − (γ1 + γ2)q1q2 + β1(p2q
2
2 − p2

2q2)

+β2

(
p2
2q1 − p1q

2
2

2
+ p1p2q2 − p2q1q2

)
(3.31)

for arbitrary γ1, γ2, β1 and β2.

3.2 The differential form of the product

The second form is a generalization of the expression (2.2) and it is a series which depends

on a “small” parameter which we call again θ:

f ⋆ g =
∞∑

r=0

Cr(f, g)θr , (3.32)

To recover the original commutative product in the limit θ → 0 we need to impose

that C0(f, g) = fg. To ensure associativity the remaining Cr’s have to satisfy the

following properties,

fCr(g, h) − Cr(fg, h) + Cr(f, gh) − Cr(f, g)h

=
∑

j+k=r

(Cj(Ck(f, g), h) − Cj(f,Ck(g, h))) , (3.33)

– 9 –
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for all j, k, r > 0. The generalization to the multiparameter case is easily done considering

θ and the C’s to have indices which are summed over.

A possible problem with this form of products is that it is defined on the space of

formal series in the coordinates, and there is in general no control on the convergence of

the series after the product has been taken. Moreover not always the differential form is

useful for field theory. The quantity C1(f, g) − C1(g, f) gives a Poisson structure on the

space which is important for quantization. One defines the Poisson structure as:

{f, g} = C1(f, g) − C1(g, f) = Λij∂if∂jg (3.34)

where

Λij =
1

2

(
C1(x

i, xj) − C1(x
j , xi)

)
(3.35)

Notice that if C1(f, g) = C1(g, f) then the product is commutative. The proof is

the following. First consider (3.33) for r = 2 and h = f = xn and g = xm. Then

relation (3.33) becomes

fC2(g, f) − C2(fg, f) + C2(f, gf) − C2(f, g)f

= xn(C2(x
m, xn) − C2(x

n, xm)) − C2(x
n+m, xn) + C2(x

n, xn+m)

= (C1(C1(f, g), f) − C1(f,C1(g, f))) = 0 (3.36)

because of the symmetry of C1. The second line of the above equation, has to hold for all

x’s and therefore it must be C2(x
n+m, xn) = C2(x

n, xn+m) for generic n,m. This implies

that C2(f, g) = C2(g, f). It is then possible to prove exactly in the same way that if

Cl(f, g) = Cl(g, f) for l < r then all the terms in the r.h.s. of (3.33) pairwise cancel, and

we are left to the equivalent of (3.36) with a generic r, and then analogously prove that

Cr(f, g) = Cr(g, f).

Since the ci’s are differential operators the product is translationally invariant if and

only if the C’s are combinations of derivatives only. In this case

Λij =
1

2
[xi, xj ]⋆ (3.37)

There is a notion of equivalence which says that two star products are to be considered as

equivalent if there exists a map T such that

T (f) ⋆ T (g) = T (f ⋆′ g). (3.38)

According to this the Grönewold-Moyal and Wick-Voros products are equivalent, the map

T being given by T = e−
θ
4
∇2

. A general result of Kontsevich (in the context of formal

series) [12] proves that two products with the same Poisson structure are equivalent. We

have seen an instance of such an equivalence while calculating the UV behaviour of Feynman

diagrams at one-loop. We have seen that, although the Green’s functions are different for

Moyal and Voros products, the UV behaviour is the same as well as the UV/IR mixing. We

will see in the next section that this is a generic feature of translation invariant products

and what counts is the cohomology class of α in the α-cohomology.

– 10 –
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4 UV/IR mixing for general products

We are now ready to calculate the two point functions at one loop. In this paper we are

only interested to the ultraviolet properties of the generalized products. The presence of

the deformed product also changes the propagator and it may alter the S-matrix. A full

analysis of a scattering process however requires to take into account issues of symmetry,

and the proper definition of the incoming states. We have considered [25] the issue for the

case in which the product is coming from a twisted symmetry [19–21] (for a review see [22])

and found that a proper treatment of the incoming states and of the symmetries implies

that there is no difference between the Grönewold-Moyal and Wick-Voros products.

We now proceed to the calculation of the loop contribution. We first have to give the

free propagator, which is

G̃2
0(p) =

e−α(0,p)

p2 − m2
. (4.1)

The presence of the exponential in the propagator alters its properties. The analysis of this

(free) propagator and its role in the S-matrix involves a proper definition of the asymptotic

states and their normalization. Since in this paper we are only interested in the corrections

of the propagator due to the loop expansion, and the ultraviolet/infrared mixing, we will

not discuss this issue. We just comment that in [25] it is shown that in the case of the

Wick-Voros product, in the context of twisted deformations, the exponential is absorbed

in the normalization of the in and out states.

In order to calculate the vertex, let us write down the interacting term of the action

in momentum space. Using the definition of the product and the fact that the integral is

a trace we have

Sint =
g

4!

∫
dxd dkd

1 dkd
2 dkd

3 dkd
4 φ̃(k2)φ̃(k1 − k2)φ̃(k4)φ̃(k3 − k4)

eα(k1,k2)eα(k3,k4)eik1·x ⋆ eik3·x

=
g

4!

∫
dkd

1 dkd
2 dkd

3 dkd
4 φ̃(k2)φ̃(k1 − k2)φ̃(k4)φ̃(k3 − k4)

eα(k1,k2)eα(k3,k4)

∫
dkd eα(0,k)δ(k1 − k)δ(k3 + k). (4.2)

So

Sint =
g

4!

∫
dkd

1 dkd
2 dkd

3 dkd
4 φ̃(k2)φ̃(k1 − k2)φ̃(k4)φ̃(k3 − k4)

eα(k1,k2)eα(k3,k4)eα(0,k1)δ(k1 + k3)

=
g

4!

∫
dkd

1 dkd
2 dkd

3 dkd
4 φ̃(k2)φ̃(k1 − k2)φ̃(k4)φ̃(k3 − k4)

eα(k1,k2)+α(k3,k4)+α(0,k1)δ(k1 + k3)

=
g

4!

∫
dkd

1 dkd
2 dkd

3 dkd
4 φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)

eα(k1+k2,k1)+α(k3+k4,k3)+α(0,k1+k2)δ(k1 + k2 + k3 + k4). (4.3)

Therefore the vertex is given by

V⋆ = V0e
α(k1+k2,k1)+α(k3+k4,k3)+α(0,k1+k2), (4.4)

– 11 –
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where V0 is the ordinary vertex defined in (2.7). We now proceed to the calculation of the

four-point Green’s function to the tree level. To this end, we must attach to the vertex

four propagators. So we have up to a constant

G̃(4) = eα(k1+k2,k1)+α(k3+k4,k3)+α(0,k1+k2)
4∏

a=1

e−α(0,ka)

k2
a − m2

δ

(
4∑

a=1

ka

)
(4.5)

=
eα(k1+k2,k1)+α(k3+k4,k3)+α(0,k1+k2)−

P

4
a=1

α(0,ka)

∏4
a=1(k

2
a − m2)

δ

(
4∑

a=1

ka

)
. (4.6)

Consider now the two diagrams of figure 1. For the planar case (a) the correction is obtained

using three propagators (4.1), one with momentum p, one with momentum −p, one with

momentum q and the vertex (4.4) with assignments k1 = −k4 = p and k2 = −k3 = q and,

of course, the integration in q. We have up to a constant

G
(2)
P =

∫
dqd e−α(0,p)−α(0,−p)−α(0,q)

(p2 − m2)2(q2 − m2)
eα(p+q,p)+α(−p−q,−q)+α(0,p+q)

=

∫
dqd e−α(0,p)−α(0,−p)−α(0,q)+α(p+q,p)+α(−p−q,−q)+α(0,p+q)

(p2 − m2)2(q2 − m2)

=

∫
dqd e−2α(0,p)−α(0,q)+α(p+q,p)+α(−p−q,−q)+α(0,p+q)

(p2 − m2)2(q2 − m2)

=

∫
dqd e−α(0,p)

(p2 − m2)2(q2 − m2)
(4.7)

where we used the last of (3.14). We see that with respect to the commutative case the

only correction is in the factor e−α(0,p) which is the correction of the free propagator. The

ultraviolet divergences of the loop are the same and therefore the short distance physics is

unaffected (in this aspect) by the star product. The correction of the free propagator can

then be reabsorbed in the S-matrix as done in [25].

Consider now the non-planar case in figure 1(b). The structure is the same as in the

planar case, but this time the assignments are

k1 = −k3 = p and k2 = −k4 = q. (4.8)

We have up to a constant

G
(2)
NP =

∫
dqd e−α(0,p)−α(0,−p)−α(0,q)

(p2 − m2)2(q2 − m2)
eα(p+q,p)+α(−p−q,−p)+α(0,p+q)

=

∫
dqd e−α(0,p)−α(0,−p)−α(0,q)+α(p+q,p)+α(−p−q,−p)+α(0,p+q)

(p2 − m2)2(q2 − m2)

=

∫
dqd e−2α(0,p)−α(0,q)+α(p+q,p)+α(−p−q,−p)+α(0,p+q)

(p2 − m2)2(q2 − m2)

=

∫
dqd e−α(0,p)+α(p+q,p)−α(p+q,q)

(p2 − m2)2(q2 − m2)
(4.9)
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since by using again (3.16) we have

α(−p − q,−p) = −α(0,−p − q) + α(0,−p) + α(0,−q) − α(p + q, q)

= −α(0, p + q) + α(0, p) + α(0, q) − α(p + q, q). (4.10)

The one-loop corrections to the propagator in the non-planar case can be rewritten as

G
(2)
NP =

∫
dqd e−α(0,p)+ω(p,q)

(p2 − m2)2(q2 − m2)
, (4.11)

where we define

ω(p, q) = α(p + q, p) − α(p + q, q). (4.12)

For the Groönewold-Moyal product this term is the phase ipiθ
ijqj.

This function has some useful property. First of all, it satisfies the 2-cocycle condi-

tion (3.13). Moreover,

ω(p, p) = 0 (4.13)

ω(p, 0) = 0 (4.14)

ω(0, p) = 0 (4.15)

ω(p, q) = −ω(q, p) antisymmetry (4.16)

ω(−p,−q) = ω(p, q) parity (4.17)

ω(−p, q) = ω(p,−q) (4.18)

ω(p, q) = ω(p − q, p). (4.19)

From (3.13) we have

α(p + q, p) = α(p + q, r) − α(p, r) + α(p + q − r, p − r) (4.20)

and by setting r = q we get

ω(p, q) = α(p, p + q) − α(p, q). (4.21)

This quantity vanishes if the product is commutative because of the condition (3.21), that

is ω is a 2-cocycle which is not a coboundary. This means that the nonplanar diagram

captures the noncommutativity of the product, or, it only depends on the α-cohomology

class. In other words no change in the ultraviolet can come from a commutative product

(an α-coboundary).

We now prove that the contribution to the one loop diagram must necessarily be of the

form piθ
ijqj and that it depends on the Poisson structure induced by the star product. We

will only need the rather mild assumption that α (and therefore ω) can be Taylor expanded

in a power series of p and q. The parity relation (4.17) requires the series to be composed

only of even monomials. Let us express the function ω with a multi-index notation

ω(p, q) =
∑

~i~j

a~i~j
p
~iq

~j (4.22)
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where ~i = (i1, . . . id) and

p
~i = pi1

1 pi2
2 . . . pid

d (4.23)

If we now use relation (4.19) we have that it must be

∑

~i~j

a~i~j
q
~i(p

~j − (p − q)
~j) = 0 (4.24)

this condition, because of the independence of p and q implies that the coefficient a must

vanish except in the case in which all of the ja’s but one vanish. In this case the anti-

symmetry of the a’s ensures that (4.24) vanishes without putting further constraints on

the coefficient. Using antisymmetry the same reasoning can be done for the first multi-

index and this shows that the term appearing in the one loop amplitude is of the kind

ω(p, q) = iθijpiqj. Where we added the imaginary unit to be consistent with the usual

notation. Using the relation (3.17) is possible to see that θ must be real.

In fact the expression which appears is the one related to the commutator of the

coordinates. A straightforward calculation gives

xi ⋆ xj − xj ⋆ xi = −i
∂α

∂pi
(0, 0)xj + i

∂α

∂pj
(0, 0)xi − ∂2α

∂pi∂qj
(0, 0) +

∂2α

∂pj∂qi
(0, 0) (4.25)

The first two terms vanish because α has no linear term (we must justify this from asso-

ciativity), while the second gives the coefficients of the quadratic terms in the expansion

of α antisymmetrised. On the other side we have established that ω is quadratic as well

and expressing

α(p, q) = αijp
iqj + . . . (4.26)

where . . . are terms cubic and above, we have

ω(p, q) = iθijpiqj = αij(pi + qi)pj − αij(pi + qi)qj = αij(pi + qi)(pj − qj) (4.27)

imposing the condition (3.18) makes only the mixed terms survive on the r.h.s., and the

quadratic mixed terms are the ones which appear in (4.25).

We have shown that the term appearing in the exponent of the nonplanar diagram (4.9)

is just the commutator of the x’s multiplied by the external and internal momenta. The

Grönewold-Moyal and Wick-Voros cases are therefore generic, their behaviour is replicated

by all translationally invariant products.

Therefore we have shown that products with the same Poisson structure (and hence the

same commutator) which are equivalent in the sense of Konsevitch, have the same structure

of infrared/ultraviolet mixing. We have also noted that equivalence in the sense of (3.38)

does not a priori mean physical equivalence. The propagators and Green’s functions are

in general different, as for the Grönewold-Moyal and Wick-Voros products, where the

Green’s functions are not the same. In this case however, using the fact that both products

come from a Drinfeld twist [30], and therefore have a deformed symmetry by a quantum

group [19, 21, 22], it can be shown [25] that the S-matrix is the same.
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In fact it is easy to see that the general translational invariant product (3.12), in the

case of α analytic comes from a Drinfeld twist. Expressing

α(p, q) =
∑

~i,~jα~i,~j
q
~i(p − q)

~j (4.28)

the product comes from the Drinfeld twist

F = exp


−

∑

~i,~j

α~i,~j
∂
~i
x ⊗ ∂

~j
y


 (4.29)

then the product is

f ⋆ g = e
P

~i,~j
α~i,~j

∂
~i
x∂

~j
yf(x)g(y)

∣∣
x=y

=

∫
dpdqe

P

~i,~j
α~i,~j

p
~iq

~j

f̃(p)g̃(q)ei(x(p+q)) (4.30)

and the usual expression (3.12) is obtained with a change of variables.

5 Conclusions

In this paper we have shown, with an explicit calculation, that the Ultraviolet/Infrared

mixing found for the Grönewold-Moyal and Wick-Voros products is a generic feature of

translationally invariant associative star products. The vertex is changed by an exponential

which maintains invariance for cyclic permutation of the external momenta but not for

arbitrary exchanges. Therefore the planar and nonplanar diagrams behave differently.

The planar diagrams have corrections to the propagator which are unchanged with re-

spect to the usual case. The nonplanar diagrams on the other side present the phenomenon

of Ultraviolet/Infrared mixing. For high internal momentum the ultraviolet divergences are

damped by a phase, but these divergences reappear in the infrared (low incoming momen-

tum). The phase appearing in the exponent in the nonplanar diagram is the one related

to the commutator of the coordinates. In a sense it may be said that the mixing is given

(in this translationally invariant case) by the Poisson structure of the underlying space.

This is non trivial, because the Green’s functions and the propagators of the theory are in

general different. What remains the same is the short distance behaviour. Our calculation

confirms the heuristic argument that the mixing is a manifestation of the spacetime version

of Heisenberg’s uncertainty, given by the Poisson structure.
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Annales Henri Poincaré 6 (2005) 991 [hep-th/0412233] [SPIRES].

[17] D. Bahns, The shuffle Hopf algebra and quasiplanar Wick products, J. Phys. Conf. Ser. 103

(2008) 012014 [arXiv:0710.2787].

[18] J.C. Varilly and J.M. Gracia-Bondia, On the ultraviolet behaviour of quantum fields over

noncommutative manifolds, Int. J. Mod. Phys. A 14 (1999) 1305 [hep-th/9804001]

[SPIRES].

[19] J. Wess, Deformed coordinate spaces: derivatives, hep-th/0408080 [SPIRES].

[20] P. Aschieri et al., A gravity theory on noncommutative spaces,

Class. Quant. Grav. 22 (2005) 3511 [hep-th/0504183] [SPIRES].

– 16 –

http://dx.doi.org/10.1103/PhysRev.71.38
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,71,38
http://dx.doi.org/10.1016/S0550-3213(00)00525-3
http://arxiv.org/abs/hep-th/0005129
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0005129
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://arxiv.org/abs/hep-th/9908142
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9908142
http://arxiv.org/abs/hep-th/0301100
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0301100
http://dx.doi.org/10.1007/s10052-002-1017-8
http://arxiv.org/abs/hep-th/0205269
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0205269
http://dx.doi.org/10.1007/s10052-002-1018-7
http://arxiv.org/abs/hep-th/0206011
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0206011
http://dx.doi.org/10.1140/epjc/s2003-01210-9
http://arxiv.org/abs/hep-th/0209253
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0209253
http://dx.doi.org/10.1088/1126-6708/2000/02/020
http://arxiv.org/abs/hep-th/9912072
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9912072
http://dx.doi.org/10.1103/PhysRevD.62.105006
http://arxiv.org/abs/hep-th/0004115
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0004115
http://dx.doi.org/10.1063/1.528514
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA,30,2789
http://dx.doi.org/10.1023/B:MATH.0000027508.00421.bf
http://arxiv.org/abs/q-alg/9709040
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=Q-ALG/9709040
http://dx.doi.org/10.1088/1126-6708/2002/04/026
http://arxiv.org/abs/hep-th/0112092
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0112092
http://dx.doi.org/10.1016/0370-2693(96)00024-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B376,53
http://dx.doi.org/10.1016/j.nuclphysb.2006.05.004
http://arxiv.org/abs/hep-th/0507030
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507030
http://dx.doi.org/10.1007/s00023-005-0232-x
http://arxiv.org/abs/hep-th/0412233
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412233
http://arxiv.org/abs/0710.2787
http://dx.doi.org/10.1142/S0217751X99000671
http://arxiv.org/abs/hep-th/9804001
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9804001
http://arxiv.org/abs/hep-th/0408080
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408080
http://dx.doi.org/10.1088/0264-9381/22/17/011
http://arxiv.org/abs/hep-th/0504183
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0504183


J
H
E
P
0
9
(
2
0
0
9
)
0
5
4

[21] M. Chaichian, P.P. Kulish, K. Nishijima and A. Tureanu, On a Lorentz-invariant

interpretation of noncommutative space-time and its implications on noncommutative QFT,

Phys. Lett. B 604 (2004) 98 [hep-th/0408069] [SPIRES].

[22] P. Aschieri et al., Noncommutative spacetimes: symmetries in noncommutative geometry and

field theory, Springer Lecture Notes in Physics volume 774, Springer, U.S.A. (2009).
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